Spatial Probit Regression Analysis Using Recursive Importance Sampling on the Human Development Index in Central Jawa Province
Abstract
This research aims to analyze the Human Development Index (HDI) in Central Java Province using two modeling approaches: the probit model and the spatial probit model. HDI, a crucial indicator of quality of life, is categorized into two groups: medium-low and high. Among the 35 districts and cities in Central Java, 9 fall into the medium-low category (35%), while 26 are classified as high (65%). Brebes Regency has the lowest HDI at 69.54, whereas Sukoharjo City boasts the highest HDI at 77.73. The results reveal that the spatial probit model provides a superior classification of HDI compared to the probit model. The mapping of prediction results highlights the discrepancies between actual and predicted HDI categories. This study underscores the advantage of incorporating a spatial approach, enhancing the accuracy of HDI analysis, and offering a more nuanced understanding of spatial distribution and dependencies in human development within Central Java. Further research is recommended to include additional variables, such as poverty levels or access to education, which spatial factors may also affect. Moreover, this method can be applied to other regions or enhanced using more complex spatial models, such as spatial autoregressive (SAR) or geographically weighted regression (GWR), for deeper and more comprehensive analysis.
References
Anselin, L. (1988). Spatial Econometrics: Method and Models. Dordrecht: Kluwe Academic Publishers.
Beron, K. J., & Verburg, T. (2004). "Spatial externalities and their estimation using spatial econometric models." Environmental and Resource Economics.
Bivand, R. S., & Piras, G. (2015). Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of Statistical Software, 63(18), 1-36.
Bliss, C. I. (1934). The Method of Probits. Science, 79(2037), 38–39.
BPS. (2020). Survei Angkatan Kerja Nasional. Jakarta: Badan Pusat Statistik.
BPS. (2021). Kemiskinan dan Ketimpangan. Jakarta: Badan Pusat Statistik.
BPS. (2022). Harapan Lama Sekolah. Jakarta: Badan Pusat Statistik.
BPS. (2022). Indeks Pembangunan Manusia. Jakarta: Badan Pusat Statistik.
BPS. (2022). Penduduk yang Mempunyai Keluhan Kesehatan. Jakarta: Badan Pusat Statistik.
BPS. (2022). Pengeluaran per Kapita. Jakarta: Badan Pusat Statistik.
BPS. (2022). Usia Harapan Hidup. Jakarta: Badan Pusat Statistik.
Calabrese, R., & Elkink, J. A. (2014). Estimating Binary Spatial Autoregressive Models for Rare Events: A Comparative Study of Estimators. Political Analysis, 22(2), 183-205.
Dewanto, T. F. (2018). Model Regresi Probit Spasial dengan Pendekatan Recursive Importance Sampling (Studi Kasus: Indeks Kesehatan Tahun 2016 di Pulau Papua). Tesis, Institut Teknologi Sepuluh Nopember.
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley.
Greene, W. H. (2008). Econometric Analysis (6th ed.). Pearson.
Kurniawan, A., & Hartono, D. (2019). "Penerapan Model Spasial dalam Analisis Pembangunan Regional." Jurnal Ekonomi Regional.
Lesage, J., & Pace, R. K. (2019). Introduction to Spatial Econometrics. CRC Press.
McMillen, D. P. (1992). Probit with Spatial Autocorrelation. Journal of Regional Science, 32(3), 335–348.
Tumanggor, J. R., & Simamora, A. H. (2021). Pemodelan Faktor-Faktor yang Mempengaruhi Indeks Pembangunan Manusia di Indonesia dengan Pendekatan Regresi Probit Spasial. Jurnal Riset Matematika dan Ilmu Pengetahuan Alam, 6(2), 123-134.
Yang, S., & He, H. (2020). Recursive Importance Sampling for Spatial Probit Models. Journal of Computational Statistics, 35(3), 451–467.



